Chapter 10 Probability

- 10.1 Sample Spaces and Probability
- 10.2 Independent and Dependent Events
- 10.3 Two-Way Tables and Probability
- 10.4 Probability of Disjoint and Overlapping Events
- **10.5 Permutations and Combinations**
- 10.6 Binomial Distributions

Permutations

n

1 of 17

Given the letters ABCD, how many ways can you arrange them?

	ABCD	BACD	BCAD	BCDA
	ABDC	BADC	BDAC	BDCA
	ACBD	CABD	CBAD	CBDA
lere's another	ACDB	CADB	CDAB	CDBA
nethod using the	ADBC	DABC	DBAC	DBCA
Counting Principle	ADCB	DACB	DCAB	DCBA

4 3 2 1 = 4! = 24 ways

Counting Principle: If one event can occur in p different ways and another event can occur in q different ways, then there are p * q ways both events can occur.

Permutations

2 of 17

Given the letters ABCD, how many ways can you arrange them if you can reuse letters?

4 4 4 4 = 256 ways

Counting Principle: If one event can occur in p different ways and another event can occur in q different ways, then there are p * q ways both events can occur.

Permutations

Given the letters ABCD, how many ways can you arrange them?

4 3 2 1

= 24 ways

Given the letters ABCD, how many ways can you arrange them if you can reuse letters?

4 4 4 4 = 256 ways

Practice -

1. How many different words can you make with the word DAVEGS if you have to use all letters just once? 2. How many 7 digit phone numbers can begin with the prefix 366-XXXX ?

```
10 * 10 * 10 * 10 = 10,000
```

```
6! = 720
```

• **Definition** - The product of the integers from 1 to n. (Only positive integers)

$$n! = n \cdot (n-1) \cdot (n-2) \cdot \ldots \cdot 3 \cdot 2 \cdot 1$$

Example:
$$4! = 4 \cdot 3 \cdot 2 \cdot 1 = 24$$

Special case: 0!=1

4

3

FREE

FERE

FEER

Permutations

5 of 17

REEF

EREF

EERF

Given the letters ABCD,							
how many ways can you							
arrange them?							

Given the letters FREE, How many unique ways can you arrange them?

Total =
$$\frac{4!}{?!} = \frac{4!}{2!} = 4 \cdot 3 = 12$$

Given the letters ESSENTIAL, How many unique ways can you arrange them?

Total =
$$\frac{9!}{?!} = \frac{9!}{2!2!} = 90,720$$

2

= 24 ways

RFEE

ERFE

EFER EEFR

REFE

ERFE

Permutations

Given the letters FREE, How many unique ways can you arrange them? Given the letters ESSENTIAL, How many unique ways can you arrange them?

Total =
$$\frac{4!}{?!} = \frac{4!}{2!} = 4 \cdot 3 = 12$$

Total =
$$\frac{9!}{?!} = \frac{9!}{2!2!} = 90,720$$

Practice -

1. PARALLEL How many unique ways can you arrange the letters?

 $\frac{8!}{2!3!} = 3,360$

2. Estelle has 8 quarters, 5 dimes, 3 nickels and a penny. How many ways can she arrange them in a line?

 $\frac{17!}{8!5!3!} = 12,252,240$

Permutations

7 of 17

There are 8 chairs and 5 students. How many different seating arrangements are possible?

Use the counting principle

8	7	6	5	4
	8!		8!	
= - ((8-5)	! .	3!	

Permutation

The number of permutations of n objects taken r at a time.

$$_{n}P_{r} = \frac{n!}{(n-r)!}$$

The position of objects matter

= 6720 *ways*

Permutations

There are 8 chair and 5 students. How many different seating arrangements are possible?

$$_{n}P_{r} = \frac{n!}{(n-r)!}$$
 $_{8}P_{5} = \frac{8!}{(8-5)!} = \frac{8!}{3!} = 6720 \text{ ways}$

Practice -

1. Sally has 7 candles, each of a different color. How many ways can she arrange the candles in a candelabra that holds 3 candles? 2. Kevin has 12 different CD's, but has a CD case that can hold only 8. How many ways can he arrange the CD's in the case?

210

19,958,400

Permutations

9 of 17

There are 8 chair and 5 students. How many different seating arrangements are possible?

$$_{n}P_{r} = \frac{n!}{(n-r)!}$$
 $_{8}P_{5} = \frac{8!}{(8-5)!} = \frac{8!}{3!} = 6720 \text{ ways}$

Practice -

1. Find the value of $_{a+2}P_2$

(a+2)(a+1)

Multiplication, Addition & Complement Principles

How many license plates can be made by using 2 letters followed by 3 digits?

26 26 10 10 10 = 676,000

Practice -

 The password to an online email account is alphanumeric. There must be exactly 4 characters/#'s. How many passwords are possible? 2. You have seven different scrabble tiles. How many possible 4 letter words can you make?

840

1,679,616

10.5 Permutations and Combinations 11 of 17 **Multiplication, Addition & Complement Principles** How many 3 digit numbers have at least one 7?

7	(9)	(9)		7	7	(9)	_	7	7	7	
(8)	7	(9)	225	(8)	7	7	26				1
(8)	(9)	7	ways	7	(9)	7	ways	= :	252 v	ways	way s

A better way: All 3 digit #'s minus all 3 digit #'s without a 7 900 - (8)(9)(9) = 252 ways

10.5 Permutations and Combinations 12 of 17 **Multiplication, Addition & Complement Principles** How many 3 digit numbers have at least one 7?

7	(9)	(9)		7	7	(9)	_	7	7	7	
(8)	7	(9)	225	(8)	7	7	26				1
(8)	(9)	7	ways	7	(9)	7	ways	= :	252 v	ways	way s

Practice -

1. How many 4 digit #'s contain at least one 8 or 9? Hint: (all possible)-(#'s w/o 8 or 9)

5,416

2. How many 4-digit #'s contain 2 or more zeros?

252

10.5 Permutations and Combinations ^{13 of 17}

• **Definition** - An arrangement of objects in which order is NOT important.

Example 1: The combinations of 2 letters in the word JULY.

6 ways - JU, JL, JY, UL, UY, LY

Example 2: The combinations of all the letters in the word JULY.

only 1 way - JULY

Combinations Formula

The number of combinations of n objects taken r at a time, where $r \le n$, is given by:

$$_{n}C_{r} = \frac{n!}{r!(n-r)!}$$

Order does not matter!!!!

14 of 17

Example 1: The combinations of 2 letters in the word JULY.

$$_4C_2 = \frac{4!}{2!(4-2)!} = 6$$
 ways

Example 2: The combinations of all the letters in the word JULY.

 $_{4}C_{4} = \frac{4!}{4!(4-4)!} = 1$ way

Combinations Formula

The number of combinations of n objects taken r at a time, where $r \le n$, is given by:

$$_{n}C_{r} = \frac{n!}{r!(n-r)!}$$

Order does not matter!!!!

15 of 17

Practice

1. You order a sandwich at a restaurant. You can choose 2 side dishes from a list of 8. How many combinations of side dishes are possible?

 $_{8}C_{2} = \frac{8!}{2!(8-2)!} = 28$

Permutations

There are 8 chair and 5 students. How many different seating arrangements are possible? $Total = 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 = \frac{8!}{3!} = \frac{8!}{(8-5)!} \qquad {}_{n}P_{r} = \frac{n!}{(n-r)!}$ $= 6,720 \text{ ways} \qquad \text{Order of objects matter}$

Combinations

There are 8 players and 5 are chosen to start on the team. How many combinations can be formed?

$$Total = \frac{8!}{(8-5)!(5)!} = 56 ways$$

Order doesn't matter

$${}_{n}C_{r} = \frac{n!}{r!(n-r)!}$$

Combinations

There are 8 players and 5 are chosen to start on the team. How many combinations can be formed?

 $Total = \frac{8!}{(8-5)!(5)!} = 56 \ ways$

Order doesn't matter

$$_{n}C_{r} = \frac{n!}{r!(n-r)!}$$

17 of 17

Practice -

1. From a list of 12 books, how many groups of 5 can be selected?

792

2. How many baseball teams of 9 can be formed from 14 players?

2,002